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A new method for predicting the optimal velocity distribution on the wall of a two—dimensional
diffuser is presented in the paper. The method by Principle of Dynamic Programming solves the
optimal control problem with inequality constraints of state variables. The physical model of
optimization is to protect the separation of the boundary layer while getting to be maximum pressurc
ratio in a diffuser of a specificd length (or getting to the shortest length in a specificd pressurc ratio).
The calculation results are fairly in agreement with the experimental ones. It shows that optimal veloci-
ty distribution on a diffuser wall should be as: the flow decelerates first quickly and then smoothly,
while the flow is near separation but always protects from it. The optimal velocity distribution can
dircctly be used to design the contour of the diffuser.

INTRODUCTION

A diffuser is an important part of compressors, fans and other air ducts. More and morc atten-
tions have been paid to its design. In the past dozens of years, the popularization and development of
the optimization technique make it possible to design a diffuser with optimal velocity distribution

The index of optimizing a diffuser is to obtain the highest pressure ratio under the condition of a
minimum constructional length. Gencrally speaking, in order to gct an optimal shape of a diffuser, it is
necessary to know an optimal velocity distribution on its wall. With the distribution, the boundary lay-
er can be avoided scperation and a maximum pressure ratio (or pressure recovery) can be obtained in a
specified length.

Nowadays, most designs of diffusers, which are two—dimensional or axial-symmetrical, arc still
based on expericnce. Designers often use the criteria of the diffusing angle or the cquivalent diffusing
angle and one—dimensional calculational method to design it. Obviously, it is too simple to rcach the
index of the optimal design.

Stratford(1959) proposed that the loss in a diffuser with the minimum length is the minimum
while the boundary layer inside it is close to but just before occurrence of separation, then the velocity
distribution is the best and the shape of the diffuser is optimal. Some rcsearchers, such as H. licbcck,
H. Fernboly, have used this principle to make some optimal designs.

Many authors also investigated the flow field in a diffuser and study how to control the flow
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separaction.
Somc authors attempt to use the optimal control theory to solve the optimal design of a diffuscr,
because the governing equations of the flow in it are differential ones.

Gu and Ji (1987) proposcd an optimal design problem of a diffuser, using the optimal control the-
ory and the boundary layer theory. The optimal velocity distribution on its wall was obtained by using
Pontryangin’s maximum principle.

In order to meet the demands of engineering application, the optimal problem has to satisfy some
constraints in both aerodynamics and strength which can be divided into two parts: onc is called as
constraint of state variable and another constraint of control variable. Thosc constraints arc often
inequality and make it very difficult to solve the problem in mathematical treatment.

It is well known that Pontryagin’s principle can only solve the optimal control problem with con-
straints of control variables. To overcome the difficulty, many authors have done some research work
and modifications such as continuous transfer techique (Jocobson, 1969; Gu, 1987) and expandcd pen-
alty function method (Gu and Miao, 1987).

Howecver, for a problem with more inequality constraints of state variables the trcatment is not cf-
ficient which have been statcd by Gu and Miao(1987). That is to say, The more the constraints, the
more the difficulties. On the contrary, the principle of dynamic programming is quite good at trcating
of state and control constraints. The more the constrains, the faster the calculation, because the numer
of considered states and decisions decreascs in secking optimal decision.

In the present work, a physical model and a mathematical expression for dynamic programming
arc established and calculated. The result yiclded by the method is quitc in agreement with not only the
experimental ones but also the result by Pontryagin’s maximum principle.

ESTABLISHMENT OF AN OPTIMAL DESIGN PROBLEM OF A DIFFUSER

It is well known that the flow losses in a diffuser mainly consist of separation loss and friction onc.
Obviously, the former is greater than the latter. The friction loss is always inevitable. However, it
docsn’t vary greatly because the friction coefficient is approximately a constant in the fully—developed
turbulent flow. The total friction loss can be considered as increasing proportionally with the axial
length of a diffuser. So the key to designing an efficient diffuser is to avoid the separation of boundary
layer. Considering the two factors mentioned above, Stratford. (1959) proposed that the propertics of a
diffuser with the minimum length and without boundary layer separation is optimal.

Generally, the turbulence degree at the inlet of a diffuser in engineering is so high that we can as-
sume for convenience that the boundary layer has become a turbulent one at the inlet edge. And
incompressible flow is only considered in present work.

The typical expressions of a optimal problem for a diffuser are as follows:

A) Pressure risc cocfficient is maximum (i.e. the discharge velocity is minimum) under the condi-
tion of a provided constructional length and without separation of the boundary layer.

B) The length of a diffuser is minimum under the condition of a provided discharge velocity (i.c.
the pressure rise coefficient is known) and without separation of the boudnary layer.

It can be proved that the cxpressions A) and B) are correlative.
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The separation of the boundary layer is a very complex problem. According to the change of ve-
locity in main flow, the separation of boundary layer can be predicted by some experimental formulas
to some extent. The following equations are adopted as the basis of solving the optimal problem, (Ref.
1,3,4,5,6,7,8,9,10).

The velocity shape factor of boundary layer is introduced as follows:

r

8,du Re™ {m =1/4 turbulent flow
= e
Udx 4% m= 1 laminar flow

M

where
Ud

“u u _ Y9
62"JD U(I_U)dy Re, =3

U is the velocity of main flow.

T >0 denotes acceleration flow, and I' < 0 deceleration one. So I can be used to judge whether the
separation happens or not.
For a deceleration flow, the relationship between d,and U is as follows (Ref.1):

_4_[ (U52)1/4]_ ~ 5_:@((]‘5:)'“
Tx J, ” =0.0175 4.]5de ; 2)

For convenience, the length of a diffuser, L, isused as a characteristic length; the velocity at the in-
let, C, as a characteristic velocity. Then Eq. (2) can be rewritten in a non—dimensional form. The
non—dimensional length of a diffuser contour is S=X /L, the non—dimensional velocity V=U / C,
the non—dimensional momentum thickness 8=4,/ L. So the Re 4, 1is

Re‘sz =U-6,/v=V"'08-Re,
where Reyg=C L/ v at the inlet of the diffuser.

Then Eq. (2) beccomes as:

d [ 1/4»:| 64V 1/4
—— 8 » - 9 = —— . e e— L] .
s (Re0 Vv ) 0.0175—4.15 v ds (Reo V.8 3
Substituting the non—dimensional form of Eqg. (1) into Eqg. (3), we yicld
{] -
% —(0014—-3.52-T)Re, + V-8 """ )

According to the result of Nikuradsc’s experiments, Buri proposed that the boundary layer will scpa-
rate when I is not greater than —0.06. As stated by Gu and Ji(1987) to ensurc the flow in a diffuscr to

be far from separation, we utilize the limit of I' as :
-004<T <0

MATHEMATICAL EXPRESSION OF THE OPTIMAL PROBLEM

The mathematical expression of the index of optimization A) is as follows:

Index function:
J(x)=V(*)-> min (5)

5.t.
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Y Lyt Re !

ds ¢

gg =(0.014—352-T)Re -V 0"
0>T3> —004

Ve)=1, B8(0)=6
V=), B(*),free

So the mathematical cxpression for dynamic programming solution is as follows:
Index function:

1
J(1) = f Tv*6 7" *Re " *ds - min

5.1,

/4, -5/4 ~-1/4

dv/ds=Tv'"*07""Re’

—1/4

d8/ds =(0.014~3.52T')(Re V)
initial condition: V(o)=1 8(o) =6
control constraint: —0.04<TI'<0
state constraint: 0< V<1 6 <6
Quantizing the iquations listed above, we yicld:

J=min{ Y AS* [I‘(k)V(k)”'B(k) TRe " } }
T{k) k=0
374

Vik+1)= V() + AS * | TV® 0k ™ *Re [ "]

B(k + 1) = 6(k) + AS * {(0.014 ~ 3.52I'(k)[Re, V(k)B(K)] '”‘}

—0.04<T(k)<0
0< V)<
6, <0(k)

and the iterative relation becomes

3/‘9(k) _S/‘Re;]“] +I(V.0k+ 1)}

Tk}

{J(V,B,k) = min{AS * [T'(k)V(k)

JWVON)=0

CALCULATION RESULT AND ANALYSIS

(10)

(6-1)
(6-12)

(1)
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(13)

(14)

(15)
(16)

(17)
(18)
(19)

(20)

In calculation, Reo and N are taken as 10° and 10 respectively. The state variables and control

variables are quantized respectively. The scts of admissible state variables are as follows:
v= {04,0.45,60.50.550.6,0.650.7,0.75,0.8,0.85,0.9,0.95, 1.0}

6= {0.00226, 0.00508, 0.00781, 0.01058, 0.01336, 0.01890, 0.02168, 0.02445, 0.02722, 0.03)

Then the allowed quantized states are:
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{(0.4,0.00226), (0.4, 0.00508), (0.4, 0.0078), +++ s+ e0e s oes (1,0.03)}

And the set of admissible control variable is as follows:

= {-0.04,-0.035, —0.03, —0.025, —0.02, —0.015, —0.01, —0.005}

The two—dimensional dynamic Programming Computatinal proccdure is used because there arc
two statc variables, the calculation procedure is presented in the computer flow chart. The initial value
of V and 6, that is , the valucs at stage o, are taken as 1 and 0.00226 respectively. The calculation re-
sults at stage 5 are presented in Table 1. There is only a part of all results because the results arc too

many to list them all. At each stage, a similar table can also be listed.

In the table 1, a grid point stands for a allowed quantized state, the valuc put to the right—up of a
grid point is the optimal valuc of index J at this state, and the onc put to the right—down of the grid
point is the corresponding optimal value of control variable I.

Computer flow chart.

Begin

Giving the maximum stage number N. Quantizing the statc variables (V and 8) and

1

For cach allowed state, calculating the index value J by Eq.(20) according to the sct
of allowed control value T. Finding the minimum value of index value J and corre-
sponding control value I'. The J and I are taken as the optimal values of index and

the control variable T

control variables respectively for this state

Giving the values of V and 0 at stage 0

Calculating thc optimal value I'(k) by interpolation at stage k, then calculating the
values of V(k+1) and 8(k+1) by Eq.(15) and Eq.(16)

<K=NT>—4{ k=K1 |

Y
End
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As shown in Fig. 1, curve ABC is an optimal velocity distribution of the diffuser. The results arc is

quite in agreement with the cxperimental data and the results calculated by Pontryagin’s maximum
principle by Gu and Ji,(1987).

The optimal velocity distribution ABC is also called as an optimal deceleration curve for a
diffuser. In the range above the curve, including the curve, there is no separation whilc I" is not less
than —0.04; on the contrary, in the range under the curve, scparation will happen. So the curve ABC is
a critical line ("= —0.04) bctween scparation and non—scparation.

Drawing a deceleration curve AB’C’ in the nonseparation range, we can find that for a diffuscr
with a specified length, the discharge velocity V *is always less then V’. On the other hand, for a speci-
fied discharge velocity V/ (which menas a specified pressue rise cocfficient) the corresponding optimal
length S° is always less than S’. That means reducing velocity along the optimal deceleration curve
ABC will yicld the maximum pressure rise cocfficient in a specified length or the minimum length of a
diffuser in a specified pressure rise. In this case, the length is minimum and the loss is nearly minimum
because there is no scparation.

From the physical cxplanation of the optimal deccleration curve in Fig.1 It is also proved that the
two expressions of index functions A) and B) of the optinal control problem are correlative. That is,
the optimal velocity distribution obtained by onc index function can satisfy another automatically.

THE CALCULATION OF THE DIFFUSER CONTOUR

The contour of the diffuser is calculated by means of the optimal velocity distribution on the sur-
face, so that it is also called as optimal design problem or inverse problem. It is well known that solving
the problem dircctly in X—Y planc will involve non—identifed of calculated region. So coordinate
transformation is neccessary. It is the easiest way to transfer the X—Y plane to ®—¥ planc.

The governing Equations. in ®—"¥ planc has been deduced strictly in the paper as:

Taking an element in X—Y plane and considering incompressible, potential flow, the continuity
equation and non—rotation equation are as follows:

aV aVv
— ! =0 21
ax 2y
av av

y _ X =0 (22)
ax ay

Velocity vector is _
V=1V (i*cosp+ j*sinpf) (23)

Where |V] is the amplitude of V. Bistheangle between Vand coordinate line X.

The transform relation between X—Y plane and ®—Y plane is:
[ =Y, fy=Y, [N/ }

f=(=X fo+X " f)/J
Where J is Jacobi matrix.
Substituting Eq. (23) and Eq. (24) into Eq.(21), because of J=£0, then we yicld:

av . av .
E(Y‘,cosﬁ—Xvsmﬂ )+a¢(—Y°cosﬂ+Xosmﬁ )

(24)
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asinf Y acosf

+Ve(=X ¥ ° oy

JSinﬂ +Y 3C05ﬂ)+ V(Xo )=O (25)

¥ 320 ¥ a0

The four items on the left side of Eq. (25) are as follows respectively,

av aV'!Xfy'*'Yi

ey (v, -cosB—XW51n6)=a¢

%/ (-7, -cosB+X°sinﬁ=O

asinf acosﬁ) _
v oo T Yo 20 =0

asinf acosf, .38 2 2
¥y Yo ¥ )=V a¥ Xo+ ¥,

In deducing the definations of normal and tangent unit vectors of equal ® and cqual ¥ lincs, Eq.

V-(—X

VX,

(25) can be rewritten as,
%'\/Xi-f-)’i-kl/':i x4yl =0 (26)
It can be easily proved that: :
Jxiayl =Jxivy, =v/y

And substituting it into Eq.(26), finally, the continuity cquation in @—Y¥ planc can bc given as:
alnV  af
il )|

EL ) ¥ 27
In the similar way, the non—rotation cquation in ®—Y¥ planc is:
alnV  af
PYTEPT 0 (28)
Two Laplace’s Egs. can be obtained from Eq. (27) and Eq.(28):
2 2
F] an +a anV -0 (29)
v FL)
2 2
#_12__g (30)
ad ¥

The velocity distribution within the diffuser can be obtained by solving Eq. (29) with ADI
method. Then from Eq.(28) the values of § on the top line (¥ =0 or ¥ =1) of the potential flow rcgion
can also be yielded, so the shape of potential flow region can be defined. The diffuser contour can be
modificd by adding thickness of boundary Jayer. The calculation result is shown in Fig.4, the line of
Y / L =0 is the central line of diffuser. The shape is quite similar to the real size of B. S. Stratford’s dif-
fuser. The equivalent diffusing angle of the diffuser is 19 ° (integral angle), and is much greater than

ordinary rccommended angle.

CONCLUSIONS

The optimal deceleration curve (i.e. optimal velocity distribution) on the wall of a diffuser is first
obtained by using the principle of dynamic programming. In solving optimal control problem of fluid
mechnics with inequality constraints of state and control variables, the dynamic programming mcthod
has many advantages over others. The physical model of optimization for a diffuser is to avoid the
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scparation of boundary layer while getting to the maximum pressure risc in a diffuser of a specified
length (or getting to the shortest length in a specified pressure rise). The calculation results arc fairly in
agreement with the experimental ones and the results calcaulated by Pontrayagin’s maximum principle.

The optimal velocity distribution on a diffuser wall should be as: the flow decelerates first quickly
and then smoothly, and the flow is near scparation but always protects from it. The optimal velocity
distribution can also be expanded to design an unsymmetric diffuser.
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0.577 C.601 0.626 0.065S 0.634 ¢.710 0.722 0.750 0.780
8=,00226

-.040 -.040 -.040 -.040 -.040 -.040 -.040 -.040 -.040

0.750 0.763 0.776 0.789 0.803 ©.818 0.84Z2 0.870 0.930
8=.00503 "

-.040 -.040 -.040 -.040 -.040 -.040 -.040 -.040 -.040

) 0.822 ¢.831 0.846 0.849 0.858 0.867 0.879 0.907 0.993

$=.,00781

-.040 -.040 -.040 ~-.040 -.040 -.040 -.040 ~-.040 -.030

0.863 0.870 0.877 0.884 0;891 0.897 0.906 0.926 1.017
8=,01058

-.040 -.040 -.040 -.040 -.040 -.040 -.040 -.040 ~-.040

0.890 0.8¢5 0.901 0.906 0.912 0.917 0.924 0.938 1.028

=.01336 -

-.040 -.040 ~-.040 -.040 -.040 -.040 -.040 -.040 -.040

0.909 0.913 0.917 0.922 0.926 0.931 0.936 » 0.947 1.031
6=,01613 .

-.(_)40 -.040 ~.040 -.040 -.040 -.040 -.040 -.040 -.040 .

0.923 0.926 0.930 0.934 0.938 0.941 0.946 0.9L4 1.030
&=,018920

-.040 ~.040 ~.040 -.040 -.040 ~-.040 -.040 °)-.04C -.040

0.935 0.938 0.441 0.944 0.948 0.931 0.954 0.961 1.028
6= 2168
: -.040 -.040 ~.040 ~-.040 ~-.040 -.040 -.040 -.040 -.040

V=0.85 y=0.80 V=0.75 V=0.70 y=0.65 ¥=0.60 ¥=0.5% V=0.50 Vv=0.45

Table 1
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